4th Generation HIL: Built for the most advanced motor drive applications

Posted by Dusan Majstorovic on Apr 2, 2020 2:45:00 AM

  • Ultra-high fidelity redefined.
  • 200ns simulation time step.
  • 3.5 ns digital input sampling.
  • The most accurate 100kHz Dual-active bridge (DAB) model.
  • JMAG-RT FEM machine model import.
  • HIL connectivity exploded: USB3.0, Ethernet, GB/s serial link, JTAG, General Purpose IO (GPIO)


While automotive and aerospace industries have already adopted model based HIL testing, power electronics industry is only playing a catch up. The good news is that the 4th generation HIL is delivering the unprecedented model fidelity needed for the most advanced motor drives and automotive power electronics applications.

High switching frequency converters, new wide-bandgap semiconductors, and new topologies are fueling the need for next generation controllers that are demanding HIL testing with ever smaller simulation time steps; faster gate drive sampling times; smaller loop-back latencies; and increasing model fidelity (including nonlinearities, spatial harmonics etc.).

Read More

Topics: C-HIL, controller hardware in the loop, HIL, smart grid converters, power electronics design, controller design, HIL simulation, motor drives

The Ship is a Microgrid (Part II) - Why is this so hard to design and build?

Posted by Matt Baker on Jun 24, 2019 9:30:00 AM

00 Top

 

This is an extension of my previous blog relating a ship's power system to a microgrid - interconnected loads (propulsion, C4ISR, propulsion and auxiliary) and distributed energy resources (power generation, distribution and energy storage) acting as a controllable entity. I will be describing a layman’s perspective on digital engineering as it applies microgrid design, building, commissioning, operation and maintenance or lifecycle of a ship. 

Read More

Topics: Microgrids, C-HIL, controller hardware in the loop, hardware in the loop, HIL, Shipboard Power Systems, Naval Microgrid, Miltary, Navy, Digital Twin

4 ways Controller Hardware in the Loop and Model-Based Engineering are Reducing Risk

Posted by Ivan Celanovic on May 21, 2019 3:48:37 PM

 

Reduce Risk

 

 

 

 

 

Industry 4.0 is dawning, and digitalization, decarbonization, and decentralization (aka D3) are fueling the electric grid (r)evolution. D3, in turn, creates opportunities for immense value creation, but invokes new technologies and design concepts, and change brings risk.

Read More

Topics: Microgrids, inverter controller, controller hardware in the loop, HIL, Resilience, Energy

7 Reasons why HIL Tested is becoming ubiquitous

Posted by Ivan Celanovic on Dec 6, 2018 3:18:34 PM

As the industrial revolution 4.0 is dawning on us, the digitalization of the utility grid and more broadly digitalization of our complete energy system is inevitable.  While digitalization brings massive opportunities for value creation, it also brings significant challenges.

Considering the cyber-physical nature of the future grid, where massive amounts of sensors, communications, embedded computing, embedded controllers, and cloud software will dominate the operation and performance, industry leaders are embracing new design, test, deployment and life cycle maintenance processes based on model based engineering and more specifically model based testing.

Asset 2-100-1

Read More

Topics: Microgrids, inverter controller, controller hardware in the loop, HIL, Resilience, Energy

Industry Spotlight Q&A: Tony Olivo and Preston Miller from FlexGen

Posted by Samantha Bruce on May 17, 2018 9:09:06 AM

FlexGen leads the energy storage industry worldwide with its breakthrough hybrid energy storage software and power conversion products for oil and gas, marine, and industrial power systems.

Their energy storage system was commissioned by power producer and retailer, Vista Energy, to build its 10-megawatt/42-megawatt-hour storage system, making it the largest battery in Texas.1

 Tony Olivo, Director of Engineering, and Preston Miller, firmware engineer at FlexGen, discuss how they used Typhoon HIL's integrated platform to test and verify the highest quality control system.

 

Read More

Topics: Smart Inverters, inverter controller, C-HIL, controller hardware in the loop, hardware in the loop, HIL

The Ship is a Microgrid (Part I): Why is this so hard to design and build?

Posted by Matt Baker on Aug 8, 2017 4:48:21 PM

image4663-1.png

Shipboard Microgrid

The ship is a microgrid with interconnected loads (propulsion, C4ISR, propulsion and auxiliary) and distributed energy resources (power generation, distribution and energy storage) acting as a controllable entity. This is not a new concept. However, it is one that is taking on far greater significance with the increasing electrification and computerized control of naval and merchant marine ships.


Read More

Topics: Microgrids, C-HIL, controller hardware in the loop, hardware in the loop, HIL, Shipboard Power Systems, Naval Microgrid, Miltary, Navy, Digital Twin

Digitalization of Microgrids and Electrical Distribution Networks

Posted by Nikola Fischer Celanovic on May 15, 2017 1:00:27 PM

Distribution grids of the future will be much more dynamic than they are today. The key drivers for this are the decentralized generation largely driven by exponential technology adoption of intermittent renewable sources like solar and wind, battery storage, as well as highly dynamic power electronics converters, and smart relays. Additionally, the resilience considerations against cyber-attacks and natural events call for a more decentralized control architecture, i.e. cellular design of the distribution grids-one in which parts of the grid can both operate as independent islands and control their own voltage and frequency, as well as operate as integral part of the large grid.

low-res.jpg

Read More

Topics: Microgrids, controller hardware in the loop, Virtual HIL, HIL, DER

6 lessons learned from the MIT Lincoln Laboratory Microgrid Symposium that will make your next microgrid project a breeze

Posted by Ivan Celanovic on Mar 3, 2017 3:45:20 PM

At the Microgrid & DER Controller Symposium 2017, the brainchild of Erik Limpaecher from the MIT Lincoln Laboratory, the ultra-high fidelity controller Hardware in the Loop (HIL) was in the spotlight, and it was glowing. It won the hearts and minds of all power engineers present.

At the workshop center stage, the real, unadulterated industrial microgrid controllers—from Eaton, GE, SEL, and Schneider—were in action. They were directly interfaced and controlling the Microgrid Controller HIL Testbed running real-time simulation comprising 3 feeders with 24 busses, one diesel generator, one natural gas generator with combined heat an power, battery storage, PV inverter, and numerous loads.  

 

 

Read More

Topics: Microgrids, controller hardware in the loop, Virtual HIL, HIL, DER

Recent Posts

Subscribe to Blog Updates

Subscribe to our channel

Share this page