Industry Spotlight Q&A: Austrian Institute of Technology

Posted by Samantha Bruce on Feb 21, 2019 6:00:28 PM

AIT smart grid converters

 

As Europe’s premiere research and technology organization, the Austrian Institute of Technology (AIT), bridges the gap between industry and research by utilizing innovative solutions to key infrastructure issues.

Zoran Miletic, Senior Research Engineer and Power Electronics Design specialist at AIT, talks about how AIT developed its powerful pre-certification toolbox to design and test smart grid converters for grid code compliance using controller Hardware-in-the-Loop (C-HIL) technology.

Read More

Topics: Smart Inverters, C-HIL, controller hardware in the loop, hardware in the loop, smart grid converters, grid code compliance, low voltage ride through, advanced smart grid converters, power electronics design, advanced grid support functions, model microgrids

7 Reasons why HIL Tested is becoming ubiquitous

Posted by Ivan Celanovic on Dec 6, 2018 3:18:34 PM

As the industrial revolution 4.0 is dawning on us, the digitalization of the utility grid and more broadly digitalization of our complete energy system is inevitable.  While digitalization brings massive opportunities for value creation, it also brings significant challenges.

Considering the cyber-physical nature of the future grid, where massive amounts of sensors, communications, embedded computing, embedded controllers, and cloud software will dominate the operation and performance, industry leaders are embracing new design, test, deployment and life cycle maintenance processes based on model based engineering and more specifically model based testing.

hil tested

Read More

Topics: Microgrids, inverter controller, controller hardware in the loop, HIL, Resilience, Energy

Spotlight Q&A: Subhashish Bhattacharya from FREEDM Systems Center

Posted by Samantha Bruce on Jun 20, 2018 4:18:33 PM

  

“The Controller Hardware-in-the-Loop is a very important and required step before actual validation or implementation because we can take care of all the corner cases.”


At the Future Renewable Electric Energy Delivery and Management (FREEDM) Systems Center at North Carolina State University, U.S. universities and industry partners focus on modernizing the electric grid using advanced power electronics.


As one of the founding faculty members at FREEDM System Center, Dr. Subhashish Bhattacharya’s research focuses on power electronics and power systems including DC Microgrids.


Dr. Bhattacharya discusses how Controller Hardware-in-the-Loop (C-HIL) reduced the cycle time of design, validation and testing of DC Microgrid controllers from academia to industry.

 

 

Read More

Topics: Smart Inverters, Microgrids, C-HIL, controller hardware in the loop

Industry Spotlight Q&A: Tony Olivo and Preston Miller from FlexGen

Posted by Samantha Bruce on May 17, 2018 9:09:06 AM

FlexGen leads the energy storage industry worldwide with its breakthrough hybrid energy storage software and power conversion products for oil and gas, marine, and industrial power systems.

Their energy storage system was commissioned by power producer and retailer, Vista Energy, to build its 10-megawatt/42-megawatt-hour storage system, making it the largest battery in Texas.1

 Tony Olivo, Director of Engineering, and Preston Miller, firmware engineer at FlexGen, discuss how they used Typhoon HIL's integrated platform to test and verify the highest quality control system.

 

Read More

Topics: Smart Inverters, inverter controller, C-HIL, controller hardware in the loop, hardware in the loop, HIL

Industry Spotlight: Ryan Smith, EPC Power

Posted by Samantha Bruce on Apr 19, 2018 3:00:00 AM

Using a Controller Hardware-in-the-Loop simulation platform, EPC Power was able to integrate their control software with new hardware in just two days. 

Based in San Diego, CA, EPC Power designs and manufactures grid forming bi-directional inverters and DCDC converters for solar, wind, energy storage, automotive and microgrid applications. 

Ryan Smith, Chief Technology Officer (CTO) and chief controls architect, talks about his experience using Controller Hardware in the Loop (C-HIL) from the early conceptual stage, to final product certification and lifecycle maintenance.

 


Read More

Topics: C-HIL, controller hardware in the loop, DER, Energy

Industry Spotlight Q&A: Jay Johnson from Sandia National Laboratory

Posted by Samantha Bruce on Mar 5, 2018 1:12:58 PM

Sandia National Laboratories is the largest U.S. Department of Energy national lab with over 12,000 employees. It has a major role in supporting inverter development and testing protocols for standards organizations and distributed energy research (DER) vendors. 

Jay Johnson, a principal member of technical Staff at Sandia, leads several renewable energy research projects in the U.S., Europe, and Asia.

He talks about his research paper, “Design and Evaluation of SunSpec-Compliant Smart Grid Controller,” and why Controller Hardware-in-the-Loop (CHIL) is a novel approach. 

Read More

Topics: Research Laboratories, C-HIL, controller hardware in the loop, DER, Energy

The Ship is a Microgrid.

Posted by Matt Baker on Aug 8, 2017 4:48:21 PM

image4663-1.png

Shipboard Microgrid

The ship is a microgrid with interconnected loads (propulsion, C4ISR, propulsion and auxiliary) and distributed energy resources (power generation, distribution and energy storage) acting as a controllable entity. This is not a new concept. However, it is one that is taking on far greater significance with the increasing electrification and computerized control of naval and merchant marine ships.


Read More

Topics: Microgrids, C-HIL, controller hardware in the loop, hardware in the loop, HIL, Shipboard Power Systems, Naval Microgrid, Miltary, Navy, Digital Twin

Digitalization of Microgrids and Electrical Distribution Networks

Posted by Nikola Fischer Celanovic on May 15, 2017 1:00:27 PM

Distribution grids of the future will be much more dynamic than they are today. The key drivers for this are the decentralized generation largely driven by exponential technology adoption of intermittent renewable sources like solar and wind, battery storage, as well as highly dynamic power electronics converters, and smart relays. Additionally, the resilience considerations against cyber-attacks and natural events call for a more decentralized control architecture, i.e. cellular design of the distribution grids-one in which parts of the grid can both operate as independent islands and control their own voltage and frequency, as well as operate as integral part of the large grid.

low-res.jpg

Read More

Topics: Microgrids, controller hardware in the loop, Virtual HIL, HIL, DER

6 lessons learned from the MIT Lincoln Laboratory Microgrid Symposium that will make your next microgrid project a breeze

Posted by Ivan Celanovic on Mar 3, 2017 3:45:20 PM

At the Microgrid & DER Controller Symposium 2017, the brainchild of Erik Limpaecher from the MIT Lincoln Laboratory, the ultra-high fidelity controller Hardware in the Loop (HIL) was in the spotlight, and it was glowing. It won the hearts and minds of all power engineers present.

At the workshop center stage, the real, unadulterated industrial microgrid controllers—from Eaton, GE, SEL, and Schneider—were in action. They were directly interfaced and controlling the Microgrid Controller HIL Testbed running real-time simulation comprising 3 feeders with 24 busses, one diesel generator, one natural gas generator with combined heat an power, battery storage, PV inverter, and numerous loads.  

 

 

Read More

Topics: Microgrids, controller hardware in the loop, Virtual HIL, HIL, DER

Recent Posts

Subscribe to Blog Updates

Subscribe to our channel

Share this page