Typhoon HIL Blog


4 Lessons Learned from the Otis Microgrid Project | Project News

Hero Image

Read More

ESTCP 2020 Project Award for Integrated Model-Based Design Process | Press Release

MicrosoftTeams-image (14)-1

Typhoon HIL wins ESTCP contract to aid DOD with the future of microgrid design

 

The provision of secure, reliable, and resilient energy and water is critical to ensuring mission execution at our military installations. Over the last 8 years, the Environmental Security Technology Certification Program (ESTCP) – DoD's environmental technology demonstration and validation program – has deployed innovative technologies designed to improve energy security, increase backup power reliability, and support critical loads during extended electrical grid outages. One of the most promising technologies in this sector is microgrids. These systems can reduce operating costs behind the meter and generate revenue by providing services to utilities and/or participating in energy markets.

Read More

Load Flow for a Better Way to Design Microgrids and Power Systems

OpenDSSblog

OpenDSS software integration brings power flow with a seamless transition to real-time, deterministic analysis.

 

In response to the DoD Digital Engineering Strategy (2018), the US Office of the Secretary of Defense’s Environmental Security Technology Certification Program (ESTCP) funded Typhoon HIL to demonstrate the Integrated Model-Based Design Process (IMBDP) for affordable, scalable, and resilient DoD installation microgrids.

Read More

4 ways Controller Hardware in the Loop and Model-Based Engineering are Reducing Risk

 

Reduce Risk

 

 

 

 

 

Industry 4.0 is dawning, and digitalization, decarbonization, and decentralization (aka D3) are fueling the electric grid (r)evolution. D3, in turn, creates opportunities for immense value creation, but invokes new technologies and design concepts, and change brings risk.

Read More

7 Reasons why HIL Tested is becoming ubiquitous

As the industrial revolution 4.0 is dawning on us, the digitalization of the utility grid and more broadly digitalization of our complete energy system is inevitable.  While digitalization brings massive opportunities for value creation, it also brings significant challenges.

Considering the cyber-physical nature of the future grid, where massive amounts of sensors, communications, embedded computing, embedded controllers, and cloud software will dominate the operation and performance, industry leaders are embracing new design, test, deployment and life cycle maintenance processes based on model based engineering and more specifically model based testing.

Asset 2-100-1

Read More

4 questions and answers about resilient energy

Posted by Paul Roege on Dec 15, 2017 10:11:40 AM

Topics: Microgrids, Resilience, Energy

What is resilience?

Risk DiceResilience is a new way of dealing with the unknown. Modern society has come to believe that we can rise above risk by using historical data and design analyses to quantify probabilities and consequences, and calculating an acceptable gamble on targeted risk mitigation measures. Resilience basically is our capacity to survive and thrive in the face of change and uncertainty – accepting the fact that we cannot always predict the future. Resilience thinking challenges us to overcome limitations of traditional risk management methods by focusing on the outcomes that are important to us, such as health and welfare.  An important difference is that we must come up with ways to enable our systems, communities, and businesses to deal with changing conditions or things that we might not have known in advance without falling apart - not only by protecting them from change, but by cultivating flexibility and a propensity to learn and adapt to changing conditions.

Read More

Recent Posts